

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 # Grevling

Grevling (Norwegian for “badger”) is a tool for running parameter studies, where
for a given set of parameter values, a sequence of commands are run based on
input files, generating output that should be captured or analyzed. Grevling
intends, in this setting, to replace the ubiquitous bash scripts.

Usage

To use Grevling most effectively, create a new directory for each study you’d
like to run. In this directory, add all the files you need to run your study,
as well as a file called grevling.yaml. This file describes, essentially,
which parameter values to run, how to run a case and which output to capture
for later. Then use grevling run to run everything automatically.

Grevling stores captured data in a subdirectory called .grevlingdata. It is
safe to delete this directory if anything should go awry. It can be
regenerated with grevling run.

Grevling tries to preserve the integrity of the data directory. If you change
the grevling.yaml file with a non-empty data directory, Grevling should detect
this and refuse to continue. To fix this, delete the data directory, or run
grevling check for more information.

Grevling stores three kinds of data from a run:

	Standard output and error from commands

	Captured files

	Data captured from standard output using regular expressions

In the first two cases, such files can be found in subdirectories of
.grevlingdata, one subdirectory per run. For the latter, these are stored in
a Pandas dataframe in .grevlingdata/dataframe.parquet using the Apache
Parquet format. The easiest way to load it is by using:

`python
from grevling import Case
data = case.load_dataframe()
`

Structure of a grevling file

The configuration file is in YAML format. The following gives a whirlwind
tour of the possibilities.

```yaml
# Define which parameters we are interested in
# Grevling will run a case once for each combination of parameters, so runtime
# may be a concern
parameters:


# Each parameter has a name and a list of values
parameter: [1, 2, 3, 4, 5]

# Values may be integers, floats or strings
float-parameter: [1.2, 1.3, 1.4]
string-parameter: [one, two, three]

# For convenience, we can specify a uniform sampling of an interval like this
# This should generate [0.0, 1.0, 2.0, 3.0]
uniform-parameter:


type: uniform
interval: [0.0, 3.0]
num: 4




# There is also support for geometrically graded sampling
graded-parameter:


type: graded
interval: [0.0, 1.0]
num: 5
grading: 1.2







# We can also define other named values, constants or expressions
evaluate:


some-constant: 1

# String values are interpreted as code to be evaluated
# Parameter values defined above may be given as input
expression: 2 * parameter

# Previously defined values can be re-used
new-expression: 4 / expression




# Templates are files which are read, rendered and then written to the
# temporary working directory set up for each case. When templates are
# rendered, all parameters, constants and expressions above are available.
# Template rendering is achieved using Mako:
# https://www.makotemplates.org/
# Mako is a powerful templating language, a full account of which is out of
# scope here.
templates:


# This file has the same name in the working directory as in the source directory
- some-template.txt

# We can use different filenames too
- source: input.txt


target: output.txt




# We can even use template substitution in the filenames
- source: my-file-${expression}.txt


target: output-${parameter}.txt







# Pre-files are also copied to the working directory, but no template
# substitution is performed. This is useful for e.g. binary data files.
prefiles:


# Otherwise, the same patterns as above are all valid.
- some-data.dat
- source: input.dat


target: output.dat





	source: my-file-${expression}.dat
target: output-${parameter}.dat




# Globbing is supported as well
# In this case, the target should be a relative subdirectory of the working
# directory. The default is ‘.’
- source: some-files*.txt


mode: glob







# Post-files work the same way as pre-files, except they are copied back from
# the working directory to the data directory after the script commands are
# finished
postfiles:



	some-output.hdf5







# This is where the magic happens. A sequence of commands to execute in the working directory
script:


# A command may be just a string, in which case it is executed via the shell
- some command to run with arguments

# Template substitution is allowed here too. Shell escaping will be
# automatically handled.
- some command with parameter-dependend arguments ${parameter}

# We can also specify arguments as a list, in which case the command is
# executed as a proper subprocess, not via the shell
- [this, is, the, right, way, to, do, it, in, my, opinion, ${parameter}]

# More sophisticated uses require us to use this form
- command: as above


# A command can optionally be named. By default, the name of a command is
# the first argument in the list of arguments (that is, the program that is
# executed). If the program name includes a path, the path is stripped so
# the name is just the name of the program file.
name: some-command

# Stdout and stderr is captured automatically if the command fails. To
# capture it unconditionally, set this to on.
capture-output: on

# To record the runtime of a command, set this to on.
capture-walltime: on

# To capture data from stdout we have to define regular expressions
capture:


# Use standard Python regular expression syntax
# https://docs.python.org/3/library/re.html#regular-expression-syntax
# Any NAMED group will be collected and added to the result
# This regular expression has groups named a, b and c
- a=(?P<a>S+) b=(?P<b>S+) c=(?P<c>S+)

# By default, we find only the last of many possible matches in the
# output.  This can be changed.
- pattern: a=(?P<a1>S+)


mode: first




# We can also collect all matches. In this case the result will be a list.
- pattern: a=(?P<a2>S+)


mode: all




# Since writing regular expressions is tediuos and error-prone, Grevling has
# some predefined ones.  In this case, we’re matching integers…
- type: integer


# This is used as the group name
name: somegroup

# And this is some text that comes before the integer to match.
# The resulting regular expression is something like:
# someints*(?P<somegroup>…)
# where … matches an integer.
# This prefix will be safely escaped before use
prefix: someint




# Grevling has a predefined regular expression for floats too.
- type: float


name: someothergroup
prefix: somefloat

# First, last and all also work for these
mode: all













# The resulting array has entries for every parameter, constant, evaluated
# expression and captured regular expression, as well as walltime for each
# command, if applicable. Grevling is often able to automatically determine the
# type for each of them, but may need help.
# You can use ‘grevling check’ to see what Grevling thinks the types will be.
types:


# In particular, Grevling cannot determine the type of regular expression
# capture groups (except predefined ones).
# Valid values here are str, int and float
a1: str
a2: str




# Finally, various settings
settings:


# To store captured stdout, stderr and files, Grevling needs to know the name
# template of a directory to store them. For uniqueness, this template should
# use all the parameters, or the single ‘magic’ parameter ‘_index’ which is
# guaranteed to be unique.
logdir: ${parameter}-and-so-on




# Grevling can generate some rudimentary plots based on the generated data.
plots:


# Each parameter interacts with the plot in a specfic way.
- parameters:



# For parameters that are ‘fixed’, Grevling will produce one separate plot
# for each of the values of that parameter.
some-parameter: fixed

# Parameters that are ‘category’ will generate multiple graphs in a
# single plot, differentiated by colors, markers or line styles.
some-parameter: category

# Parameters that are designated as ‘variate’ place their data points
# in different locations on the x-axis.
some-parameter: variate

# If a parameter is ‘mean’, the data will be averaged over all values of
# that parameter.
some-parameter: mean

# For parameters that are ‘ignore’, the user asserts that this parameter
# does NOT influence the data plotted. In this case Grevling will pick an
# arbitrary value for that parameter. This is the default setting for
# unmentioned parameters.
some-parameter: ignore




# Give the name of the parameter, evaluable or captured result to use for
# plotting on the x-axis. If this is omitted, and there is exactly one
# parameter that is ‘variate’, the value of that parameter will be used.
# Otherwise, xaxis must be provided. The xaxis value may also be a list type
# (e.g. from a capture group with mode ‘all’), in which case it effetively
# functions as an additional variate parameter.
xaxis: something

# Give the names of the parameters, evaluables or captured results to use
# for plotting on the y-axis. If there is more than one, this effectively
# functions as an additional categorical parameter.
yaxis:



	first


	second


	third







# For each of the three style categories (color, marker and line) you may
# either provide a fixed value or tie it to a category (any parameter given
# as ‘category’, or ‘yaxis’ if there are multiple y-axes). For categorical
# styles, you may also provide a list of values. Grevling will attempt to tie
# categorical parameters to styles automatically if not explicitly provided.
style:



	color:
	category: some-parameter





line: solid
marker:


category: yaxis
values: [circle, square, triangle]







# If there are more than one effective variate parameters (that is, including
# the ‘xaxis’ specification), the default plot style is ‘scatter’. Otherwise
# it is ‘line’.
type: line

# For the filename template you can use any parameter values designated as
# ‘fixed’, or evaluables that only depend on such. Don’t add a file extension.
# The plots are stored in the .grevlingdata folder.
filename: plot-${some-parameter}

# Specify the backends to use. Some are optional dependencies!
format:



	
	matplotlib   # Create png files
	# pip install matplotlib







	
	plotly       # Create html files that can be used interactively in a browser
	# pip install plotly>=4







	csv          # For use with e.g. Excel or TiKZ/PGFPlots







# For these you can use templates that depend on fixed and/or categorical
# parameters, as the case may be.
legend: …
xlabel: …
ylabel: …
title: …

# Plot linearly or logarithmically
xmode: linear
ymode: log

# Turn grid on or off (default on)
grid: off







```


 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

